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Abstract

Internet Protocol flows present high variability at small time scales as well as long range dependence, which can be

captured by multifractal models. Estimating the bandwidth to support the Quality of Service required by these flows is

the key to Traffic Engineering. This paper introduces a novel envelope process which is a minimalist yet accurate model

for multifractal flows. The envelope process is an upper bound to the volume of arrivals from a multifractal Brownian

motion. The envelope process accuracy was assessed using both real network traces and synthetically generated traces.

Moreover, the solution of a queue fed by multifractal flows is presented and an expression for the time at which the

queue length reaches its maximum is derived. This time instant is used for the derivation of an efficient method for the

computation of the equivalent bandwidth of multifractal flows. Furthermore, a policing mechanisms to assure the con-

formance of a flow to the multifractal envelope process is presented. It is also shown that a monofractal approach for

modeling multifractal flows leads to overestimation of the bandwidth needed.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Since the seminal work of Leland et al. [1], several studies have shown that network traffic presents scale

invariance, or ‘‘scaling’’, which is the absence of any specific time scale at which the ‘‘burstiness’’ of a traffic
stream can be characterized. Instead, it is necessary to describe the traffic across different time scales. Since

that time, self-similar or (mono) fractal processes have been used for modeling such network traffic.
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Scaling of monofractal traffic is measured by a single constant value: the Hurst parameter, H. One of the

most popular monofractal processes for traffic modeling is the fractal Brownian motion process (fBm), due

to its parsimonious representation of the modeled traffic. The multifractal generalization of fractal Brown-

ian motion is the multifractal Brownian motion (mBm), which is a Gaussian process capable of capturing

both the high variability existing on small time scales and long-term correlations. Moreover, for small time
scales its increment is, locally, an fBm realization.

In addition to long-term memory, Internet Protocol (IP) traffic presents a non-trivial scaling structure at

small scales [2]. At these scales, traffic is highly variable and more complex; moreover, it follows less defin-

itive scaling laws. For such traffic, the marginal distribution of counts is clearly non-Gaussian, calling for a

representation beyond second-order statistics.

The concept of equivalent bandwidth is intimately connected with both network dimensioning and Qual-

ity of Service [3]. The equivalent bandwidth of a flow can be defined as the minimum required bandwidth

such that QoS requirements of this flow are met. There has been a great interest in this concept, since it
promises to bridge the gap between the design of statistical multiplexing networks and the familiar design

of circuit-switched networks. Numerous studies investigate equivalent bandwidth [3–6]; some of them have

involved traffic with long range dependence [7–9].

The computation of the equivalent bandwidth of a multifractal flow requires the solution of the queuing

system fed by this flow. Solving queueing systems with (multi/mono) fractal input, however, is not a trivial

task. Although the Large Deviation theory can be employed to overcome these difficulties [10,11], it gen-

erally implies a non-realistic assumption about buffer sizes. One way to avoid such an assumption is to use

envelope processes, which set upper bounds to the accumulated amount of work arriving up to a certain
time. These envelope processes are parsimonious representations of stochastic processes and allow simple

solutions for queueing systems fed by (mono/multi) fractal processes yet do not incorporate assumptions

about buffer size.

The present paper introduces a novel envelope process for modeling multiscaling traffic. The envelope

process is an upper bound for the accumulated amount of traffic arriving up to a certain time from a mul-

tifractal Brownian motion process (mBm) [12]. The derivation of the present envelope process is based on

the fact that an mBm can be locally modeled as an fBm. The envelope process has been validated using both

synthetic and real network traffic. The traces of IP traffic used in the validation process were publicly avail-
able and were collected from various sites in academic and industrial environments during the years from

1995 to 2003, including periods before and after the expansion of the World-Wide-Web (WEB). The results

show that although mBm is a steady state Gaussian process, the envelope process involves a tight bound for

the amount of traffic arriving from real network streams, regardless of the time and place where the traces

are collected.

This paper also proposes a method for the computation of the instant in time at which a queue fed by

several multifractal flows reaches its maximum. Such results are used to calculate the probability of loss, as

well as to determine the equivalent bandwidth of an aggregate of several multifractal flows. Moreover, an
efficient algorithm for computing the equivalent bandwidth is presented.

An envelope process for monofractal traffic was introduced in [13] and was extensively validated in [9].

That process is a special case of the mBm envelope process introduced here. Modeling multifractal flows

using monofractal models, however, has been found to lead to considerable overestimation of the band-

width needed by these flows. While the time scale of interest derived in [9] considered a single busy period,

that presented in this paper takes into account the evolution of the queue length and, consequently, con-

siders various busy periods.

This paper is organized as follows: Section 2 reviews the definition of the multifractal Brownian motion
process. Section 3 introduces an envelope process based on mBm and presents results from a validation

procedure designed to evaluate the accuracy of this process. Section 4 presents the computation of the time

scale at which a queue fed by a multifractal flow reaches its maximum. Section 5 introduces the computa-
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tion of the equivalent bandwidth of an aggregate of multifractal flows. Section 6 extends the Fractal Leaky

Bucket policing mechanism to monitor multifractal flows. Section 7 discusses related work, and Section 8

presents the conclusions.
2. Multifractal Brownian motion

Multifractal processes exhibit highly irregular patterns as a function of time. The local regularity of a

sample path of such a process can be described using a local Holder exponent, which is a generalization

of the Hurst parameter [14]. This exponent provides a measure of scaling and depends on both time and

sample paths.

The Holder exponent is the largest value of H(Æ), 0 6 H(Æ) 6 1, such that
jX ðt þ cÞ � X ðtÞj 6 kjcjHðtÞ
for c ! 0: ð1Þ
For monofractal processes, the Holder exponent (Holder function) is a constant value (Hurst parameter

H), whereas for multifractal processes it changes randomly with time. Let H(Æ) : (0,1)! (0,1) be a Holder
function. Multifractal Brownian motion is a continuous Gaussian process with non-stationary increments

defined on (0,1) as follows:
W HðtÞ ¼
1

CðHðtÞ þ 1=2Þ

Z 0

�1
½ðt � sÞHðtÞ�1=2 � ð�sÞHðtÞ�1=2
dBðsÞ þ

Z t

0

ðt � sÞHðtÞ�1=2
dBðsÞ

� �
;

where B(s) is the Brownian motion.

The multifractal Brownian motion process is a generalization of the fractal Brownian motion process,

yet it exhibits local asymptotic self-similarity (lass), i.e.
lim
q!0þ

W ðt þ quÞ � W ðtÞ
qHðtÞ

� �
u2Rþ

¼ fBHðtÞðuÞgu2Rþ ; ð2Þ
where W(Æ) is an mBm and BH(t)(u) is a realization of an fBm process with Hurst parameter H, given by

H(t).

The value of the Holder function is crucial for the characterization of multifractal traffic. An accurate

estimator, introduced in [15], is used here.
3. Envelope process for multifractal traffic

The solution for a queueing system fed by an input process requires the knowledge of the amount of

work arriving in that system. The envelope processes furnishing upper bounds for these quantities can

be either deterministic or probabilistic. In deterministic envelopes, the amount of work arriving will never

surpass the envelope value, whereas in probabilistic envelopes, this limit may be surpassed with a certain
pre-defined probability. Probabilistic envelope processes provide tighter bounds, since they can take into

consideration statistically probable fluctuations instead of the worst possible case for the process being

modeled. Dimensioning based on deterministic envelope processes may lead to bandwidth waste, since

what is provided must consider the maximum possible amount of work which might arrive at any time.

Occasional spikes of arrivals can be ignored in probabilistic envelope processes. Even though a certain

packet loss may occur when peak loads have not been taken into consideration, the probability of this loss

is at most equal to the probability of violation, a parameter of the envelope process.
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3.1. Definition of the envelope process

This section introduces a novel envelope process for the modeling of multifractal flows and provides

experimental evidence of its high precision.

An upper bound for the accumulated amount of work arriving can be calculated as the mean amount of
work plus an upper bound for accumulated increments. For calculations, this upper bound for mBm incre-

ments is equivalent to an upper bound for fBm increments, since in the neighborhood of any time instant t,

an mBm can be approximated by an fBm with Hurst parameterH given by the value of the Holder function

H(Æ) at the time instant t. For fBm increments, the upper bound can be computed as in [9]:
Table

Real n

Trace

dec-pk

dec-pk

199911

200001

AIX-1

MEM

MEM

MRA-

COS-1
ZH ðtÞ 6 jHtH�1; ð3Þ

where ZH(t) is an fBm increment at time instant t.

Thus, an upper bound for the accumulate work arriving from an mBm process with a mean of �a, stan-
dard deviation r and Holder function H(Æ) can be expressed as:
ÂðtÞ ¼
Z t

0

�aþ jrHðxÞxHðxÞ�1 dx; ð4Þ
which is called the mBm envelope process.

This envelope reduces to the fBm envelope previously derived in [9] when H(Æ) is a constant value, i.e.,
ÂðtÞ ¼ at þ jrtH : ð5Þ
3.2. Assessment of envelope process accuracy

Simulation experiments using both synthetic traffic and real network traffic were conducted in order to
assess the accuracy of the proposed envelope. Publicly available traces containing real network traffic were

used in the validation process. These traces were collected in a period spanning eight years, from 1995 to

2003, a time span which included traffic prior to the expansion of the WEB. The traces collected in 2003

were obtained from the NLANR site (http://www.nlanr.net) and were obtained at aggregation points in

high performance connection networks, such as vBNS and Internet2 ABILENE. Those gathered in 1999

and 2000 were collected at an OC-3 link between Auckland University and its Internet Service Provider

[16]. The traces collected in 1995, the dec-pkt collection, were gathered on an Ethernet network which

was the primary Internet Access point of the Palo Alto Digital research groups [17]. Table 1 shows the char-
acteristics of these traces, all involving sampling precision in the order of microseconds.
1

etwork traces used in trace-driven simulation

Date Packets Aggregation point

t-1 03/08/1995 22:00 3,300,000 Digital IAP

t-4 03/09/1995 14:00 5,700,000 Digital IAP

29-134258-1 11/29/1999 12:42 58,000,000 University of Auckland

25-143640-1 01/25/2000 14:36 7,000,000 University of Auckland

049492523 04/04/2003 13:49 9376 NASA Ames to MAE-West

-1053844177 05/24/2003 23:54 220,904 University of Memphis

-1054459191 06/01/2003 02:54 266,708 University of Memphis

1057960474 07/11/2003 22:24 4,137,819 Merit Abilene

057970154 07/12/2003 00:49 1,247,518 Colorado State University

http://www.nlanr.net
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Fig. 1. Multiscale diagrams for the traces (a) MEM-1053844177, (b) 20000125-143640-1, and (c) dec-pkt-4.
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Both monofractal and multifractal analysis of the traces in Table 1 were carried out using the A-V

estimator [18], which has its code available in [19]. Monofractality is observed when the scaling expo-

nent aq = 1(q) + q/2 presents a linear behavior, 1(q) = Hq, whereas multifractality is detected by non-linear

behavior. Fig. 1 presents the multiscale analysis of the traces MEM-1053844177, dec-pkt-4 and 20000125-

143640-1. Small time scales (j1, j2) defined in the range [1,5] were used. Each entry Y(k) represents the num-
ber of bytes observed at the points of aggregation during the kth time slot of duration c, set to 1 ms, 10 ms
and 100 ms for the traces MEM-1053844177, dec-pkt-4 and 20000125-143640-1, respectively. Multifractal-

ity can be identified by the presence of different slopes for different intervals. For instance, the trace MEM-

1053844177 (Fig. 1b) has two distinct regions of q values, [0–3] and [3–8], indicating that multifractal

modeling should be used.

Fig. 2 shows the raw data in the traces MEM-1053844177, dec-pkt-4 and 20000125-143640-1 as well the

Holder functions at the same points computed according to the procedure in [15]. The highly changeable

nature of the Holder function value is additional evidence of the multifractal nature of these traces.
Fig. 3 presents, both the envelope and the amount of work arriving. The mBm envelope process can be

seen to provide a tight bound for the accumulated traffic arriving in real networks. This process was also

validated using the other traces listed in Table 1, and a similar precision resulted.



Fig. 2. Raw data and estimated Holder function of real network traffic: (a) raw data (MEM-1053844177), (b) Holder function (MEM-

1053844177), (c) raw data (dec-pkt-4), (d) Holder function (dec-pkt-4), (e) raw data (20000125-143640-1) and (f) Holder function

(20000125-143640-1).
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To answer the question of whether real network traces can be modeled using a monofractal process, fBm

envelope processes (Eq. (5)) were derived for the same traces used. The A-V estimator [18] was employed to

evaluate the Hurst parameter value. Table 2 gives the parameters for the traces MEM-1053844177, dec-pkt-

4 and 20000125-143640-1, whereas Fig. 4 shows the accumulated real traffic and monofractal envelope pro-

cess. Since monofractal envelopes consider only the global burstiness value (the Hurst parameter), the

monofractal fBm envelope process deviates greatly from the accumulated real traces, and consequently

overestimates the dynamic (local) burstiness of what is actually multifractal traffic. Fig. 4 shows clearly that
monofractal models do not capture the dynamics of multifractal flow.
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Fig. 3. Evaluation of mBm envelope process using real network traffic: (a) trace MEM-1053844177, (b) trace 20000125-143640-1, and

(c) trace dec-pkt-4.

Table 2

Parameters of fBm envelope process used in the experiments

Trace Mean (�a) Variance r2 H

MEM-1053844177 1013.8 3245708.7 0.78

20000125-143640-1 7354.2 37326523.3 0.87

dec-pkt-4 2711.0 3813455.9 0.82
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The mBm generator introduced in [12] was used to generate synthetic data for validation. Up to 106 data

samples from mBm processes were considered, and various Holder functions were employed. Fig. 5 shows

the accumulated traffic generated synthetically, as well as the mBm envelope process. The Holder functions

used were:
HðtÞ ¼ 1:9t2 � 1:9t þ 0:975; t 2 ð0; 1Þ;
HðtÞ ¼ t=2:0þ 0:5; t 2 ð0; 1Þ:

ð6Þ
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Fig. 4. Evaluation of the fBm envelope process using real network traffic: (a) trace MEM-1053844177, (b) trace 20000125-143640-1,

and (c) trace dec-pkt-4.
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Fig. 5. Evaluation of the mBm envelope process using synthetic traces: (a) H(Æ) a linear function and (b) H(Æ) a quadratic function.
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The mBm envelope process also provides a tight bound independent of the Holder function, although

violations of the established bound are smaller than those established by pre-defined probability values.

As will be seen in Section 5, a closed analytical expression for Holder exponents is not necessary for the

computation of the equivalent bandwidth of a traffic stream. However, such a closed expression can be use-

ful for other purposes. The derivation of a polynomial approximation for the Holder function can be use-
ful, since such approximations produce accurate results. In these experiments, the Holder function values

for real network traces were computed using the procedure defined in [15]. Then, polynomial approxima-

tions for these Holder function values were derived. Polynomials of different degrees were then tested. Fi-

nally, the results of envelope processes using polynomial Holder functions were compared to actual traces

from real network traces.

Fig. 6 shows the envelope processes derived using a Holder function approximated by a seven-degree

polynomial for the traces MEM-1053844177, 20000125-143640-1 and dec-pkt-4. The precision observed

was similar to that obtained using polynomials to the degree defined in the range [7,15]. For polynomials
with a lower power, however, the bounds produced were loose. Precision did increase slightly for powers up

to 15; but the use of a seventh power was found to provide a relatively good trade-off between accuracy and

efficiency.
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4. Computation of the length of a queue fed by multifractal flows

In this section, an expression of the length of a queue fed by an mBm envelope process is presented, and

the expression of the time at which the queue length reaches its maximum value is also derived.

4.1. Computation of queue length

The queue length at time t of a First-In First-Out (FIFO) queue with constant rate is given by the

following equation [20]:
QðtÞ ¼ AðtÞ � SðtÞ; ð7Þ
where A(t) and S(t) are the amount of work arriving and the amount of work served up to time t. More-
over, S(t) can be computed as
SðtÞ ¼ Ct þmin 0; inf
tP0

fAðtÞ � Ctg
� �

¼ Ct þ Aðt�Þ � Ct�; ð8Þ
where A(0) = 0 and t• = arg inftP0{A(t) � Ct}, the time instant at which the largest idle period in the inter-

val [0, t] ends.

Let r• = t/t•, S(Æ) can be expressed as
SðtÞ ¼ Ct þ Aðt=r�Þ � Ct=r�: ð9Þ
Thus, Q(t) can also be expressed as
QðtÞ ¼ AðtÞ � SðtÞ ¼ AðtÞ � Aðt=r�Þ � Ctð1� 1=r�Þ: ð10Þ
By bounding the behavior of the arrival process with the mBm envelope process, it is possible to trans-

form the problem of obtaining a solution for the stochastic system Q(Æ) into the easier problem of finding

the solution for a deterministic system, Q̂ð�Þ.
The upper bound for the amount of service provided up to the time instant t, the service envelope, can be

computed as
ŜðtÞ ¼ Ct þ Âðt=r̂�Þ � Ct=r̂�: ð11Þ
The upper bound for the queue length Q(Æ), Q̂ð�Þ, can then be calculated by considering both the arrival and
service envelopes. Q̂ð�Þ is given by
Q̂ðtÞ ¼ ÂðtÞ � ŜðtÞ
¼ ÂðtÞ � Âðt=r̂�Þ � Ctð1� 1=r̂�Þ

¼
Z t

0

�aþ jrHðxÞxHðxÞ�1 dx�
Z t=r̂�

0

�aþ jrHðxÞxHðxÞ�1 dx� Ctð1� 1=r̂�Þ: ð12Þ
4.2. Time scale of interest of a queue fed by a single multifractal flow

The time scale of interest, at which the queue length reaches its maximum value, tw, is found by solving

the following equation:
q̂max ¼ max
tP0

fQ̂ðtÞg; ð13Þ
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which yields
Fig. 7.

(a) q =
t̂
H ¼

jr H ð̂tHÞð̂tHÞH ð̂tHÞ � r̂�H ð̂tH=r̂�Þð̂tH=r̂�ÞH ð̂tH=r̂�Þ
� �

ðC � �aÞð1� 1=r̂�Þ

2
4

3
5: ð14Þ
The time scale of interest defines the point in time at which, in a probabilistic sense, the unfinished work

in the queuing system is at its maximum, indicating that the average arrival rate has dropped below the link
capacity so that the queue size will start decreasing. At this point in time, the source rate still exceeds the

link capacity but afterward the probability that the average arrival rate will exceed the link capacity is neg-

ligible. Such a time scale is the most important for estimating the equivalent bandwidth of a stream.

Note that to evaluate t̂
H
it is necessary to know the actual value of H(Æ) at specific time instants, rather

than the analytical expression ofH(Æ). In other words, t̂
H
can be computed by using the sample mean, sample

variance and specific values ofH(Æ) which are measured from the traffic stream, making the framework intro-

duced in this paper appropriate for the real time estimation of the equivalent bandwidth of a traffic stream.

Simulation experiments were conducted using both synthetic and real network traces to verify the accu-
racy of Eqs. (12) and (14). The evolution of the queue length was recorded for various levels of utilization.

The time scale of interest, tw, for the trace MEM-1053844177 aggregated at a time scale of 1 ms was com-

puted and compared to that found in the experiments. Fig. 7a and b show this evaluation for utilization

values of 0.7 and 0.9. For that arrival process, the mean and variance are �a ¼ 1013:83 and

r2 = 3245708.75, respectively. The probability of violation was defined as 10�3, with the Holder function
H(Æ) estimated using the method described in [15].
The precision of the estimation of t̂

H
increases with the load. For q = 0.7 the estimated value deviates 3%

from the measured values (45,698 ms) while for q = 0.9 it deviates 0.69% from the measured value
(48,130 ms). Maximum deviation was found to be 3.5% for the traces in Table 1. The deviation in simula-

tion experiments with synthetic traces was negligible.

When the amount of work is bounded by a monofractal envelope process (Eq. (5)) the time scale of inter-

est, t̂
H
, is given by the following:
t̂
H ¼ jrHð1� ðr̂�Þð�HÞÞ

ðC � �aÞð1� 1=r̂�Þ

" # 1
1�H

: ð15Þ
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The Hurst parameter,H, plays an important role in this equation, since the t% value increases exponentially

with ½ 1
1�H
. Hence, misleading results can be expected when multifractal traffic is modeled using the

monofractal envelope process, since the Hurst parameter, H, overestimates the variation of the Holder

exponent.

Simulation experiments to estimate the time scale of interest were carried out for the amount of work in
trace MEM-1053844177 which is bounded by a monofractal envelope process. The estimated value of t̂H for
utilization levels 0.7 and 0.9 were 231,543 ms and 3,242,741 ms, respectively; these results reinforce the fact

that the monofractal envelope process provides a loose upper bound for multifractal flows.

4.3. Time scale of interest of a queue fed by several multifractal flows

An expression for the envelope process for modeling the aggregation of several flows is also needed to

estimate the time scale of interest. The amount of traffic in this aggregated flow can be computed using the
local asymptotically self-similar (lass) property. In [21] it was shown that the aggregate of N fBm processes

with mean �ai and variance r2i is an fBm process with mean of �a ¼
PN

i¼1�ai and of r2 ¼
PN

i¼1r
2
i . Since, an

mBm process can be represented locally by a single fBm process resulting from the aggregation of several

fBm processes, the mBm envelope process can also be approximated for small time scales by using an over-

all fBm envelope process resulting from the aggregation of N fBm envelope processes.

The derivation of Â
Nð�Þ is as follows: assume N independent flows defined by the following parameters:

mean �ai, variance r2i and Holder exponents Hi(t). Let the aggregate process be denoted by W(Æ), with the
envelope process for each flow given by ÂiðtÞ. The aggregate envelope process Â

N ð�Þ for the cumulative work
of W(Æ) in the interval [0, t] is then given by
Â
NðtÞ ¼

XN
i¼1

ÂiðtÞ ¼
Z t

0

XN
i¼1

�ai þ j
XN
i¼1

r2i H iðxÞx2HiðxÞ�1

 ! XN
i¼1

r2i x
2HiðxÞ

 !�1=2

dx; ð16Þ
where ÂiðtÞ is the envelope process for the ith flow.
Â
N ð�Þ can now be inserted into Eq. (11) to obtain an envelope process for the amount of service provided

up to time instant t, which gives the following:
Ŝ
N ðtÞ ¼ Ct þ Â

N ðt=r̂�Þ � Ct=r̂�: ð17Þ

Moreover, an upper bound for the queue length QN(Æ), Q̂

N ð�Þ, can be computed by considering both the
arrival and service envelopes. Q̂

Nð�Þ is given by
Q̂
N ðtÞ ¼ Â

N ðtÞ � Ŝ
NðtÞ

¼ Â
N ðtÞ � Â

N ðt=r̂�Þ � Ctð1� 1=r̂�Þ

¼
Z t

0

XN
i¼1

�ai þ j
XN
i¼1

r2i H iðxÞx2HiðxÞ�1

 ! XN
i¼1

r2i x
2HiðxÞ

 !�1=2

dx

�
Z t=r̂�

0

XN
i¼1

�ai þ j
XN
i¼1

r2i H iðxÞx2HiðxÞ�1

 ! XN
i¼1

r2i x
2HiðxÞ

 !�1=2

dx� Ctð1� 1=r̂�Þ: ð18Þ
The time scale of interest here is the time instant t at which Q̂
N ð�Þ reaches its maximum value, i.e.
q̂Nmax ¼ max
tP0

fQ̂N ðtÞg ð19Þ
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or
j
XN
i¼1

r2i H iðtÞt2HiðtÞ�1

 ! XN
i¼1

r2i t
2HiðtÞ

 !�1=2
2
4

þ
XN
i¼1

r2i H iðt=r̂�Þðt=r̂�Þ2Hiðt=r̂�Þ�1

 ! XN
i¼1

r2i ðt=r̂
�Þ2Hiðt=r̂�Þ

 !�1=2
3
5� C �

XN
i¼1

�ai

 !
ð1� 1=r̂�Þ ¼ 0: ð20Þ
This equation can be solved numerically using classical root-finding methods such as the Newton–Raphson

[22] which requires low computational time. To verify the accuracy of Eq. (20), various simulation exper-

iments were conducted using the traces presented in Table 1. A queue was fed by the aggregate of these

flows, and the evolution of the queue length was recorded for different levels of utilization. Fig. 8 shows
the results obtained from simulation experiments using traces MRA-1057960474, MEM-1053844177,

COS-1057970154 and AIX-1049492523. The estimated and measured time scale values differ by less than

1%. For a utilization level of 0.8, the estimated maximum time scale value was 46,848 ms, whereas the mea-

sured value was 46,805 ms. For a utilization level of 0.9, the estimated and measured maximum time scale

values were 47,616 ms and 47,607 ms, respectively. These results reinforce those found for a single flow

(Eq. (14)), thus suggesting that precision increases with load.

A special case of statistical multiplexing is the multiplexing of homogeneous flows, in which the

envelope process of the aggregated traffic AN(Æ), Â
N ðtÞ, is defined as:
Â
N ðtÞ ¼

XN
i¼1

ÂiðtÞ ¼
Z t

0

N�aþ N 1=2jrHðxÞxHðxÞ�1 dx; ð21Þ
where the upper bound for the queue length QN(Æ), Q̂
N ð�Þ, is defined by
Q̂
N ðtÞ ¼ Â

N ðtÞ � Ŝ
N ðtÞ

¼ Â
N ðtÞ � Â

N ðt=r̂�Þ � Ctð1� 1=r̂�Þ

¼
Z t

0

N�aþ N 1=2jrHðxÞxHðxÞ�1 dx�
Z t=r̂�

0

N�aþ N 1=2jrHðxÞxHðxÞ�1 dx� Ctð1� 1=r̂�Þ: ð22Þ
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The time scale of interest for these homogeneous flows is given by the following equation:
t̂
H ¼ N�1=2

jr H ð̂tHÞð̂tHÞH ð̂tHÞ � r̂�H ð̂tH=r̂�Þð̂tH=r̂�ÞH ð̂tH=r̂�Þ
� �

ðc� �aÞð1� 1=r̂�Þ

2
4

3
5 ¼ N�1=2 t̂

H

i ; ð23Þ
where t̂
H

i is the time scale of interest for a single flow (Eq. (14)), with link capacity normalized according to

the number of flows, N, i.e., c = C/N.
5. Multifractal flow aggregate equivalent bandwidth

In this section, a method for computing the bandwidth necessary to support requirements for buffer

overflow is proposed, as well as one for determining the maximum probabilistic delay for an aggregate

of heterogeneous flows. The problem in this section can be stated as follows:

Given a set of flows with mean �ai, standard deviation ri and the Holder exponent expressed by Hi(t), what is
the link capacity needed so that the maximum queue size will be bounded by q̂Nmax with probability �?
To answer this question, it is necessary to find the effective bandwidth value, Ĉ, which should satisfy the

following relationship:
max
t>0

fQ̂N ðtÞg � q̂Nmax ¼ 0; ð24Þ

max
t>0

fÂNðtÞ � Â
N ðt=r̂�Þ � Ctð1� 1=r̂�Þg � q̂Nmax ¼ 0; ð25Þ
where Q̂
N ð�Þ is an upper bound for the queue length (Eq. (18)). Ĉ can be computed by traditional numerical

methods, such as the Newton–Raphson or Quasi-Newton methods [22]. However, in such methods, con-

vergence to a solution is highly dependent on the initial values given, which makes the approach inappro-

priate for real-time implementation, since convergence may be greatly delayed. An heuristic method based

on knowledge of the specific queueing system was developed and is presented in Fig. 9.

This heuristic is based on the fact that the equivalent bandwidth is lower bounded by the mean arrival

rate �a and upper bounded by the peak rate. Since the latter may not be known, an Unbounded Binary
Search (UBS) is conducted in the interval ½�a;CÞ, where C is the channel capacity; this UBS is subject to

the restriction given in Eq. (25).
A UBS is carried out in two steps. In the first step, an effective bandwidth candidate value Ĉ is defined as

the mean value increased by a small increment �aþ �; this value is then inserted into Eq. (25). If Eq. (25) is
satisfied, the desired value of the equivalent bandwidth has been found. Otherwise, the value of Ĉ is repeat-

edly doubled until q̂Nmax > maxt>0fQ̂
N ðtÞg. With the Ĉ value derived in the first step, a Binary Search is

conducted on the interval ðĈ=2; Ĉ
. Theorem 1 establishes the convergence of this algorithm.

Theorem 1. The equivalent bandwidth of an aggregate of N flows can be computed in at most
n ¼ OðlogðCÞÞ ð26Þ
iterations, where C is the channel capacity in bits/sec.

The proof for this theorem is given in Appendix A. The execution times for the algorithm were recorded

for different combinations of traces. The machine used had a 1 GHz AMD processor, 256 MB of memory

and the LINUX RedHat 8.0 operating system. The execution time never exceeded 250 ms, which is quite

encouraging for the implementation of such an algorithm in real time.



Fig. 9. The algorithm for computation of the equivalent bandwidth of a flow: (a) Step 1: Initialization and (b) Step 2: Binary research.
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The whole advantage of statistical multiplexing is the efficient use of resources achieved by interleaving

packets from different streams, which allows the support of a greater number of flows than circuit switching

does. This benefit can be evaluated by calculating the gain measure, G(n), defined as the ratio between n

times the equivalent bandwidth of a flow and the equivalent bandwidth for the aggregate of n homogeneous

flows. G(n) is given by
GðnÞ ¼
Pn

i¼1EBi

EBðnÞ ¼

Pn

i¼1

R t̂Hi
0

�aiþjriH iðxÞxHiðxÞ�1 dx�
R t̂Hi =r̂�

i
0

�aiþjriH iðxÞxHiðxÞ�1 dx�K

h i
t̂Hi ð1�1=r̂�i Þ½ 


R tHH

0

Pn

i¼1
�aiþj

Pn

i¼1
r2
i
HiðxÞx2HiðxÞ�1ð ÞPn

i¼1
r2
i
x2HiðxÞð Þ

1
2

dx�
R tHH=r̂�n
0

Pn

i¼1
�aiþj

Pn

i¼1
r2
i
HiðxÞx2HiðxÞ�1ð ÞPn

i¼1
r2
i
x2HiðxÞð Þ

1
2

dx�K 0

" #

t̂HHð1�1=r̂�nÞ½ 


; ð27Þ
where EBi is the equivalent bandwidth of ith flow and EB(n) is the equivalent bandwidth of an aggregate of

n flows; t̂
H

i and t̂
HH

are the time scales resulting from the effective bandwidth computations of the ith flow

and multiple flows, respectively. K is the buffer size at the multiplexer, and K 0 = K/n.

A special case is the multiplexing of homogeneous flows. Here, the gain is defined as the ratio between n

times the equivalent bandwidth of a flow and the equivalent bandwidth for the aggregate of n homogeneous

flows. G(n) is given by



Table

Holde

Flow

1

2

3

4

5
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GðnÞ ¼ nEBð1Þ
EBðnÞ ¼

R t̂H

0
�aþjrHðxÞxHðxÞ�1 dx�

R t̂H=r̂�
1

0
�aþjrHðxÞxHðxÞ�1 dx�K

h i
t̂Hð1�1=r̂�

1
Þ½ 
R t̂HH

0
�aþn

�1
2 jrHðxÞxHðxÞ�1 dx�

R t̂HH=r̂�n
0

�aþn
�1
2 jrHðxÞxHðxÞ�1 dx�K 0

h i
t̂HHð1�1=r̂�nÞ½ 


; ð28Þ
where EB(1) is the equivalent bandwidth of a single flow and EB(n) is the equivalent bandwidth of an aggre-

gate of n flows, with t̂
H
and t̂

HH
being the time scales given by the effective bandwidth computations of sin-

gle and multiple flows, respectively. K is the buffer size at the multiplexer, and K 0 = K/n.

Fig. 10 shows the gain for traces with H(Æ), defined in Table 3 for different values of variance. The mean
arrival rate is �a ¼ 1000 and the variance for the flow labeled ‘‘low’’ is r2 = 10,000. For the curves labeled
‘‘average’’ and ‘‘high’’, the variance values are 10r2 and 100r2, respectively. The gain can thus be seen to
increase with variance. For instance, for Holder exponents expressed as a quadratic function, the maximum

gain is 1.35 for streams with low variance, whereas it is greater than 3.5 for streams with high variance. The
gain is also influenced by the Holder exponent values. What is actually relevant is the mean value of the

Holder exponent up to the time scale of interest, i.e.,
R t̂HH

0
HðxÞdx=̂tHH

. This relationship can be observed

by comparing Fig. 10a and b. Traces with Holder exponents expressed by a quadratic function yield greater

gains than those with exponents expressed by cubic function even when the mean and variance are the

same. For flows with average variance, values of the maximum gain is 1.9 for traces with exponents ex-

pressed by a quadratic function, but only 1.2 for those with exponents expressed by a cubic function.
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Fig. 11. Multiplexing gain obtained using real traffic traces.
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Statistical multiplexing gain was also investigated using real network traces. Fig. 11 shows experiments

using the traces MEM-1053844177, MEM-1054459191, and 20000125-143640-1 (Table 1). The gain for the
trace 20000125-143640-1 is greater than that for the other traces. Again, this can be seen to be the result of

the fact that it has a greater variance and a higher mean H(Æ) value up to the time the queue reaches its
maximum.

To determine whether a monofractal approach can be used for resource dimensioning in networks with

multifractal flows, a monofractal envelope (Eq. (5)) was derived for a trace with Holder exponents ex-

pressed by a quadratic function. Fig. 12 shows the gain considering both an mBm envelope process,
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denoted H(Æ), and the monofractal envelope process, denoted H, for both high and average variance values.

The Hurst parameter H is defined as the mean value of the H(Æ) function up the instant of time t̂H. It can be
seen that the gains obtained by these two types of envelopes differ. For average variance values, the gain

obtained by the use of the mBm envelope process is slightly one unit larger than the gain obtained by

the use of the fBm envelope process, whereas it is almost two units for high variance values. This difference

results from the fact that the Hurst parameter overestimates the local behavior of Holder exponents, lead-

ing to overprovisioning of resources and, consequently, a lower gain.

The appropriateness of monofractal modeling was also evaluated using real network traces. In Fig. 13,
an example involving the trace 20000125-143640-1 is shown. Again, one can see that a monofractal model

leads to overprovisioning of resources and a low gain (H High r2 curve).
6. Policing multifractal flows

Once a flow is admitted into a network domain, it must be policed in order to enforce that the stream of

bytes generated is in accordance with the declared traffic descriptors at the admission time. An ideal polic-
ing mechanism would allow packets into the network if and only if the flow is well-behaved. Otherwise,

incoming packets should be dropped or marked as low priority.

The Leaky Bucket policing mechanism has been adopted by several network standards. However, it as-

sumes that the accumulated policed traffic grows linearly as a function of the variance, which does not hap-

pen in multifractal traffic. To cope with this deficiency, the bucket sizes needs to be quite large which is

undesirable, since bursts of violating traffic can be misleadingly considered to be in conformance with

the negotiated contract and be marked as having high priority. In [9], this problem was illustrated using

monofractal traffic.
Simulation experiments with real network traffic have also been carried out to show that the Leaky

Bucket demands an unrealistic bucket size for the policing of multifractal flows. The leaky rate was set
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to the mean arrival rate, and the bucket size was calculated using an Unbounded Binary Search so that a

target violation probability value was obtained for the flow being policed.

Fig. 14 shows the bucket size as a function of the ratio between the mean arrival rate and the leaky rate

for the traces MEM-1053844177, MEM-1054459191 and 20000125-143640-1. Note that huge bucket sizes

are demanded by all flows when the leaky rate is set to the mean arrival rate. Even when the leaky rate is

twice the mean arrival rate, the bucket size is still too big. In this case, the calculated bucket sizes were

75,120, 77,866 and 967,820 bytes, respectively, for the traces MEM-1053844177, MEM-1054459191 and
20000125-143640-1. Moreover, a high leaky rate value (twice the mean rate) is also undesirable since it

has been shown that when the leaky rate is set to such values, violating traffic is marked as in conformance

[23].

A policing mechanism for monofractal traffic was introduced in [9]. In this paper such a mechanism has

been extended to handle multifractal flows. The mechanism is called a multifractal leaky bucket (MFLB).

The amount of work accepted by MFLB is given by
L̂ðtÞ ¼
Z t

0

�aþ WHðxÞxHðxÞ�1 dxþ S; ð29Þ
where �a is the average arrival rate of the flow. W is given by jr, where j is a constant and r is the standard
deviation of the flow.

The multifractal leaky bucket (MFLB) works as follows. A time window with the duration of s time
units is defined. The arrival rate during this time window is compared to the declared mean value ð�asÞ.
If it exceeds the mean value, the work which has arrived during this time window is compared to what

is allowed by the MFLB envelope process (Eq. (29)) during the same period. If this work surpasses what

is allowed, all packets in excess are marked. The time window is then increased by s time units, i.e., a time
window with duration of 2s is now considered. This new window begins at the time the arrival has violated
the declared mean arrival rate. If the work arriving during this new time window also exceeds the allowed

volume of work for this period, the number of packets with a total volume minus the volume already

marked are also marked.
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As long as the mean number of arrivals surpasses the declared mean value, the sampling interval (time

window) is increased in units of s time units. Whenever the mean number of arrivals drops below the

declared value, the time window is shrunk back to s time units, and the mean arrival rate continues to
be checked. Note that MFLB works with a specific envelope process which can be redefined dynamically

if necessary.
A mathematical description of the dynamics of the MFLB is as follows. Let Cð~t þ nsÞ define the cumu-

lative number of packets arriving during the interval ½~t;~t þ ns
:

Cð~t þ nsÞ ¼ Að~t þ nsÞ � Að~tÞ; ð30Þ
where A(t) is the number of arrivals up to time t.

MFLB checks whether Cð~t þ nsÞ exceeds the allowed mean number of packets arriving during the inter-
val ns, i.e, �ans. If it does, the MFLB verifies if the number of arrivals exceeds the number of arrivals allowed
by the envelope process where kð~t þ nsÞ ¼ L̂ð~t þ nsÞ � L̂ð~tÞ. If this limit is also surpassed, the excess not al-
ready marked in previous windows is marked, i.e., Cð~t þ nsÞ � kð~t þ nsÞ � Cð~t þ ðn� 1ÞsÞ þ kð~t þ ðn� 1ÞsÞ
packets are marked. Then the MFLB increases the time window (n = n + 1) and repeats the whole process.
Whenever the mean arrival rate drops below the declared value �a, the time window is shrunk back to s time
units (Fig. 15).

Fig. 16 presents the violation probabilities produced by an ideal mechanism, as well as by the MFLB and

the LB with leaky rates of 1.5 and 2 times the mean arrival rate. Under an ideal policing mechanism, the

violation probability jumps from a very low value to 1 as soon as the source starts transmitting with a mean

arrival rate value above the declared value. The violation probability for a multifractal leaky bucket follows

a pattern which is similar to the behavior of such an ideal mechanism, except that it reacts to violation at a

rate of 1.10 the nominal value. This delay in reaction is quite acceptable for a non-ideal mechanism. On the
Fig. 15. Multifractal leaky bucket.
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143640-1, and (c) trace dec-pkt-4.
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other hand, the leaky bucket makes no significant distinction between a violating source and a non-violat-

ing source, nor does it tend to 1 when arrival rate is high.
The multifractal leaky bucket mechanism compares the cumulative number of arrivals to the number of

arrivals allowed by the MFLB envelope process at various points in time. The sensitivity of these results to

the duration of the time window is evaluated by investigating the behavior with time windows 1, 100, 1000

and 5000 times longer than the window size used in the previous example. The outcomes are found not to

be dependent on the duration of the time window. Fig. 17 shows the violation probability as a function of

the arrival rate for different window durations. These findings reinforce the robustness of the multifractal

leaky bucket as a policing mechanism for multifractal flows.
7. Related work

Erramilli et al. [2] have proposed that traffic should be modeled by random cascades for time scales

smaller than a certain cutoff value and be represented by an fBm for larger scales. They show that for
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IP traffic, the cutoff scale is of the order of one Round Trip Time (RTT), while for VBR videos, it is typ-
ically approximately one frame in duration. Erramili et al. showed that much more accurate results can be

obtained by using their model rather than using purely monofractal models.

Other models based on multiplicative cascades have also been proposed. These models map a given sam-

ple onto a binary multiscale tree [24]. Each node of the tree corresponds to the aggregate of the traffic

mapped onto its descendants. Thus, nodes at higher levels of the tree correspond to coarser time scales,

whereas nodes at lower levels correspond to finer time scales. The multipliers (weights) assigned to each

descendant of a node can be set to represent a specific marginal distribution and scaling. In one of these,

the Multifractal Wavelet Model (MWM) [25], multipliers are multiplicative innovations, generating
approximately a log-normal marginal distribution. Such models require the setting of 2 + log2N parame-

ters, where N is the sample size. The major drawback of MWM is the number of parameters to be fitted

and the need to construct a multiscaling binary tree, which is not suitable for on-line characterization. A

maximum time scale for queues fed by MWM has also been derived.

Recent investigation [26] on small time scales of Internet traffic suggests that monofractal behavior is

observed for these scales. It is claimed that correlations for small time scales are caused mainly by flows
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with bursts of densely clustered packets, rather than the acknowledgement mechanism of TCP. However,

the investigations based on publicly available traces used for this paper clearly show multifractal behavior

for these scales.

Another line of work related to what is proposed in this paper is traffic control based on measurements.

In [27], the time scale for which losses most probably occur, the (dominant) time scale of interest is com-
puted using a hybrid measurement/analytical approach. The time scale is determined by observing a virtual

queue with a smaller capacity than that of the one under study. In [28], a maximum rate envelope process

was used to characterize the arrival as well as the service rate, these envelopes are derived via measurement.

The maximum time scale can be derived by using these two measures.
8. Conclusions

This paper has introduced a novel traffic model, called the mBm envelope process, for the modeling of

multifractal flows. This model has been validated using both synthetic and real network traffic and has been

shown to be quite accurate. An algorithm for computing the equivalent bandwidth of a multifractal stream

has also been presented. Such an algorithm can be used for real time estimation in admission control mech-

anisms. It has been shown that the mean value of the Holder function computed up to the maximum time

scale of interest determines the gain obtained by statistical multiplexing of multifractal flows. This paper

has also presented a special policing mechanism, an extension of the mechanism introduced in [9], appro-

priate for multifractal traffic.
Currently, a comparison between the modeling capacity of the envelope process and of the models based

on wavelets is under study. It is suggested that the effectiveness of the envelope process when used in

measurement-based frameworks be assessed.
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Appendix A

In this appendix, a proof for the theorem which limits the computational complexity of the algorithm for

flow equivalent bandwidth computation is provided.

Theorem 1. The equivalent bandwidth of an aggregate of N flows can be computed in at most
n ¼ OðlogðCÞÞ ðA:1Þ

iterations, where C is the channel capacity in bytes/s.

Proof. In the first step, the estimated bandwidth value is doubled at each iteration. The initial value is �aþ �
and the maximum possible value is C. Thus, the first step will require a maximum number of iterations

corresponding to the following:
n ¼ dlogðC � ð�aþ �ÞÞe ¼ OðlogðCÞÞ: ðA:2Þ



374 C.A.V. Melo, N.L.S. da Fonseca / Computer Networks 48 (2005) 351–375
In the second step, a Binary Search is made in the interval ðĈ=2; Ĉ
. It is known that a Binary Search in
an interval [a,b] takes at most
k ¼ dlogðmÞe ðA:3Þ

iterations [29], where m is the width of the interval. In this case
m ¼ Ĉ=2:
Thus,
n ¼ dlogðĈ=2Þe ¼ dlogðĈÞ � 1e ¼ OðlogðCÞÞ:

The complexity of the algorithm is
OðlogðCÞÞ þOðlogðCÞÞ ¼ OðlogðCÞÞ: � ðA:4Þ
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